
Improved Approximation for
Vector Bin Packing

Arindam Khan

(Georgia Tech IDSIA, Lugano, Switzerland)

(Joint work with Nikhil Bansal and Marek Elias at TU Eindhoven)

Vector Packing: Multidimensional Bin Packing

1/11/2016 2

Resources (dimensions):
CPU, Memory, Network,

Disk, I/O

Jobs (items) Servers (bins)

Goal: Assign all jobs to the servers s.t. min number of servers are needed.

Vector packing

3

• Input:
Set of 𝑑-dimensional vectors: 0,1 𝑑

• Goal:
pack all vectors into minimum # of unit
vector bins such that for each bin for each
dimension the coordinate wise sum of
packed vector in it is ≤ 1.

𝑑 = 2

Applications:

• Classical Generalization of Bin Packing (𝑑 = 1).

• Multi processor scheduling

-- Cloud computing.

• Layout Design.

• Multi-objective resource allocation.

• Logistics and loading problems.

1/11/2016 4

Asymptotic Approximation:

• Even for 1-D Bin Packing: NP Hardness from Partition
• Can’t distinguish in poly time if need 2 or 3 bins.

• 3/2 hardness when OPT=2.

• What happens when OPT is large?

• Asymptotic Approximation Ratio is 𝜌
𝑖𝑓 𝐴𝑙𝑔𝑜 𝐼 ≤ 𝜌. 𝑂𝑃𝑇 𝐼 + 𝑂 1 .

• Asymptotic Polynomial Time Approximation Scheme (APTAS):
𝑖𝑓 𝐴𝑙𝑔𝑜 𝐼 ≤ (1 + 𝜖) 𝑂𝑝𝑡(𝐼) + 𝑂𝜖 1

1/11/2016 5

Vector Packing: a tale of approximability

• Dimension 𝑑 is constant.

• Asymptotic Approximation:

• 𝑑 + 𝜖 [Linear grouping: de la Vega-Lueker ‘81]

• 2 + ln(𝑑) + 𝜖 [Assignment LP: Chekuri-Khanna ‘99]

• 1 + ln(𝑑) + 𝜖 [Configuration LP: Bansal-Caprara-Sviridenko FOCS ‘06]

• Absolute/Nonasymptotic: 2 for 𝑑 = 2 [Kellerer-Kotov 2003]

• Hardness:

• No APTAS (from 3D Matching)[Woeginger 1997].

1/11/2016 6

Our Results:

• Algorithm:

• Almost tight (1.5 + 𝜖) (Absolute) Approximation for 2-D. (Prev: 2)

• 1.405 Asymptotic Approximation for 2-D. (Prev: 1.69)

• 0.807 +ln(𝑑 + 1) Asymptotic Approximation for 𝑑 dim. (Prev: 1 + ln 𝑑)

• Hardness of 𝑑 for constant rounding based algorithms.

• Resource Augmentation:

• If we allow extra resource of 𝜖 in (𝑑 − 1) dimensions, we can find a packing in
polynomial time in 1 + 𝜖 𝑂𝑝𝑡 + 𝑂(1) number of bins.

1/11/2016 7

Bin Packing LP Relaxation : Configuration LP
• ℬ: set of configurations (possible way of feasibly packing a bin).

•min { 𝐶 𝑥𝐶 ∶ 𝐶∋𝑖 𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ∈ 0,1 (𝐶 ∈ ℬ) }

• Objective: Minimize #selected configurations (bins).

• Constraint: For each item, at least one configuration containing the item
should be selected. (packing all items)

1/11/2016 8

• Problem: Exponential # variables!.

• Solution: 1 + 𝜖 approx. of vector
knapsack (separation problem of dual.)

Round & Approx Framework (R & A)
[Bansal-Caprara-Sviridenko ’06]

• 1. Solve configuration LP.

• 2. Randomized Rounding: For few (? ?) iterations :

select a configuration 𝐶’ at random with probability
𝑥

𝐶′
∗

𝐿𝑃(𝐼)
.

• 3. Approx: Let S be the set of remaining uncovered elements.
Pack S using a (𝑑 + 𝜖) approximation algorithm.

[Replace each item 𝑣 by 𝑣
∞

and pack using 1-D bin packing.]

• This gives (1 + ln 𝑑) approximation by choosing few = ln 𝑑 ∙ 𝐿𝑃(𝐼).

1/11/2016 9

Round & Approx Framework (R & A)
Extended [Bansal-K. SODA’14]

• Let 𝒜 be a 𝜌-approximation algorithm where all items are rounded
to O(1) number of values.

• 1. Solve configuration LP.

• 2. Randomized Rounding: For ln 𝜌 ∙ 𝐿𝑃(𝐼) iterations :

select a configuration 𝐶’ at random with probability
𝑥

𝐶′
∗

𝐿𝑃(𝐼)
.

• 3. Approx: Each item is left with probability
1

𝜌
.

Pack remaining uncovered elements using 𝒜.

• This gives (1 + ln 𝜌) approximation.

1/11/2016 10

Rounding based Algorithms:

• Ubiquitous in bin packing: Linear grouping, Geometric Grouping [Karp-
Karmarkar], Harmonic Rounding [Lee-Lee.]

1/11/2016 11

• Large items are replaced by larger items of O(1) types.

• Loss: Due to larger items.

• Gain: Fewer configurations.

• Theorem: 𝑑-approximation is tight for algorithms that
round the large coordinates to 𝑂(1) number of values.

• 1 + ln 𝑑 approximation is tight by R&A framework.

• How to break this natural barrier of 1 + ln 𝑑?.

Beating (1 + ln 𝑑)

• Any better approx. algorithm must implicitly or
explicitly consider the original (unrounded) sizes of
items while packing them

• Consider 𝑑 = 2

• Tight example for rounding based algorithms:
When there are only two items 𝑢, 𝑣 in the bin with
𝑢 + 𝑣 ≥ (1 − 𝜖, 1 − 𝜖).-- matching bins.

• If no such bins we get a 3/2 approximation using a
structural lemma along with resource augmentation.

1/11/2016 12

Resource Augmentation

1/11/2016 13

• Allow extra resource 𝜖 in one dimension.

• Theorem:
If we allow resource augmentation in 𝑑 − 1 dimensions
we can pack items in 1 + 𝜖 𝑂𝑝𝑡 number of bins.

• Round big items (linear grouping) in non-augmented dim.,
Round up items to multiple of 𝜖2 in other dim.
⇒ O(1) types of big coordinates.

• Find optimal packing of rounded big items.
• Pack small items using an assignment Linear Program.

Structural lemma

• 2-D vector packing: Any packing of 𝑚 bins
can be transformed into a packing of 3𝑚/2
bins where each bin either contains 2 items
or has slack in one of the dimensions.

• (Existential Result) A packing of ≈ 3𝑚/2
bins where each bin either contains 2 items
(matching bins) or has O(1) types of big
items (nonmatching bins).

1/11/2016 14

• 𝑑-Dimensions: Any packing of 𝑚 bins can be transformed into a packing of
packing of≈ 2𝑚 bins where 𝑚 bins contain ≤ 𝑑 − 1 items (compact bins)
in it and other≈ 𝑚 bins have slack in (𝑑 − 1) dimensions (noncompact bins).

2 D vector packing

• Matching bins: create a graph with nodes = items in matching bins, Edge
(𝑢, 𝑣) if the items 𝑢 and 𝑣 can be packed into one bin. – Pack using matching!

• Nonmatching bins: packing is based on O(1) types of rounded items. We can
find the rounding specification (i.e., rounded values and number of items in
each size class) in polynomial (𝑛𝑂(1)) time.
– Rounded specification is sufficient, does not need original item sizes.

• If we can separate out items in matching bins and nonmatching bins, we can
pack each of them separately.

• However we don’t know which items are packed in which bins!

1/11/2016 15

MultiObjective MultiBudget Matching
[Chekuri-Vondrak-Zenklusen SODA’11]

• Given a graph and a partition of its vertices
s.t. 𝑉 ≔ 𝑆1 ∪ 𝑆2 ∪ ⋯ 𝑆𝑘 and numbers
𝑛1, 𝑛2, ⋯ 𝑛𝑘; there is a poly time Algorithm
that finds a matching (if exists) that saturates
nearly 𝑛𝑖 items from each 𝑆𝑖 .

• Vector Packing:
oNodes (𝑉): items

o𝑆𝑖: sizeclasses,

o Edge (𝑢, 𝑣) if the items 𝑢 and 𝑣 can be packed
into one bin.

1/11/2016 16

2-D : Overview of 3/2 Approximation

1/11/2016 17

𝑂𝑝𝑡 = 4, 𝑚1 = 3, 𝑚2 = 3, 𝑑 = 2

𝑤1, ℎ1 ,
(2,4)

𝑤2, ℎ2 , (1,4)

(𝑤3, ℎ3), (3,2)

(0,0)

(0,0)
(0,0)

• Guess 𝑂𝑝𝑡, num. of matching bins 𝑚1, num. of

nonmatching bins 𝑚2 where 𝑚1+𝑚2≤
3

2
𝑂𝑝𝑡.

• Guess 𝑂(1) types of rounded size classes and
number of items in each size class in matching
and nonmatching bins. (items in matching bins
are not rounded, they are just assigned to
classes)

2-D : Overview of 3/2 Approximation

• Guess 𝑂𝑝𝑡, num. of matching bins 𝑚1, num. of

nonmatching bins 𝑚2 where 𝑚1+𝑚2≤
3

2
𝑂𝑝𝑡.

• Guess 𝑂(1) types of rounded size classes and
number of items in each size class in matching
and nonmatching bins. (items in matching bins
are not rounded, they are just assigned to
classes)

• Use multi-objective matching using original
sizes to pack items into 1 + 𝜖 𝑚1 bins.

1/11/2016 18

𝑂𝑝𝑡 = 4, 𝑚1 = 3, 𝑚2 = 3, 𝑑 = 2

𝑤1, ℎ1 ,
(2,4)

𝑤2, ℎ2 , (1,4)

(𝑤3, ℎ3), (3,2)

(0,0)

(0,0)
(0,0)

2-D : Overview of 3/2 Approximation

• Guess 𝑂𝑝𝑡, num. of matching bins 𝑚1, num. of

nonmatching bins 𝑚2 where 𝑚1+𝑚2≤
3

2
𝑂𝑝𝑡.

• Guess 𝑂(1) types of rounded size classes and
number of items in each size class in matching
and nonmatching bins. (items in matching bins
are not rounded, they are just assigned to
classes)

• Use multi-objective matching using original
sizes to pack items into 1 + 𝜖 𝑚1 bins.

1/11/2016 19

𝑂𝑝𝑡 = 4, 𝑚1 = 3, 𝑚2 = 3, 𝑑 = 2

𝑤1, ℎ1 ,
(2,4)

𝑤2, ℎ2 , (1,4)

(𝑤3, ℎ3), (3,2)

(0,0)

(0,0)
(0,0)

2-D : Overview of 3/2 Approximation

• Guess 𝑂𝑝𝑡, num. of matching bins 𝑚1, num. of

nonmatching bins 𝑚2 where 𝑚1+𝑚2≤
3

2
𝑂𝑝𝑡.

• Guess 𝑂(1) types of rounded size classes and
number of items in each size class in matching
and nonmatching bins. (items in matching bins
are not rounded, they are just assigned to
classes)

• Use multi-objective matching using original
sizes to pack items into 1 + 𝜖 𝑚1 bins.

• Use rounding based algorithm to pack
remaining items into 1 + 𝜖 𝑚2 bins.

1/11/2016 20

𝑂𝑝𝑡 = 4, 𝑚1 = 3, 𝑚2 = 3, 𝑑 = 2

𝑤1, ℎ1 ,
(0,4)

𝑤2, ℎ2 , (0,4)

(𝑤3, ℎ3), (0,2)

(0,0)

(0,0)
(0,0)

R & A Framework beyond (1 + ln 𝑑)

• More technical !

• 2-D:
Matching → Rand. Rounding → Rounding based algo.

• 1 + ln 1.5 ≈ 1.405 -approximation.

• 𝑑-D: No such theorem for multiobjective 𝑑-D matching!

1/11/2016 21

R & A Framework beyond (1 + ln 𝑑)

• 𝑑-Dimensions:

• Random Rounding → Matching → Rounding based algo.

• Compact bins contain ≈ 𝑑𝑚 items.

• After random rounding ≈ 2𝑚 items are left from compact bins.

• Now we use multiobjective matching to pack in ≈ 1.5𝑚 bins.

• 1.5 + 𝑙𝑛
𝑑+1

2
-approximation. ∎

1/11/2016 22

Open Problems!

 Improved approximation (ln ln 𝑑?) or inapproximability (as 𝑓(𝑑))

 Understanding the integrality gap of configuration LP.

 Generalize multiobjective matching to higher dimensions > 2

o Can give better approximation for small dimensions.

o Can not beat 𝑂(ln 𝑑) by our approach.

 Other generalizations of bin packing (geometric bin packing,
geometric knapsack, strip packing, weighted bipartite edge coloring) –
Read my Thesis!

1/11/2016 23

Questions!
1/11/2016 24

1/11/2016 25

Extra Slides
Arindam Khan (Georgia Tech IDSIA, Lugano, Switzerland)

(Joint work with Nikhil Bansal and Marek Elias at TU Eindhoven)

Configuration LP

• ℂ: set of configurations(possible way of feasibly packing a bin).

Primal: LP(I)

min {

𝐶

𝑥𝐶:

𝐶∋𝑖

𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

Dual:

max {

𝑖∈𝐼

𝑣𝑖:

𝑖∈C

𝑣𝑖 ≤ 1 𝐶 ∈ ℂ , 𝑣𝑖 ≥ 0 𝑖 ∈ 𝐼 }

• Problem: Exponential number of configurations!

• Solution: Can be solved within (1 + 𝜖) accuracy using separation problem for the dual.

[Frieze-Clarke ‘84]

1/11/2016 27

Dual Separation problem =>
𝑑-D Vector Knapsack problem:

𝑖∈C

𝑣𝑖
∗ > 1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐶 ∈ ℂ

• Max 𝑖∈𝐼 𝑣𝑖
∗𝑥𝑖

• S.t. 𝑖∈𝐼 𝑠𝑖
𝑘 𝑥𝑖 ≤ 1 , for 𝑘 ∈ 𝑑 .

𝑥𝑖 ∈ {0,1}

Proof Sketch (2 Bins → 3 match./nonmatch. bins)

1/11/2016 28

• 2 D vector packing: Small items: < 𝜖, 𝜖 , Big Items: Otherwise.

• If not matching → ≥ 3 items

• Each dim, only one item > ½.

• One item ≤
1

2
,
1

2
in each bin [candidate item]

• Two candidate items 𝑐𝐴, 𝑐𝐵can be packed
into one matching bin 𝐷.

• If candidate item is big, we get enough slack.

• Otherwise, we can remove a subset of small items from 𝐴 (and 𝐵) to get bins
𝐸, 𝐹 with slack and pack removed items in 𝐷.

Vector Packing: Multidimensional Bin packing

1/11/2016 29

Resources: CPU,
Memory, Network,

Disk, I/O

Jobs Servers

Goal: To assign all jobs to the servers such that
minimum number of servers are needed.

Vector packing (Two Dimensions)

1/11/2016 30

(0.3, 0.5)

(0.5, 0.1)

(0.25, 0.5)

(0.6, 0.4)

(0.1, 0.3)

Vector packing: (Two Dimension)

1/11/2016 31

(0.3, 0.5)

(0.5, 0.1)

(0.25, 0.5)

(0.6, 0.4)

(0.1, 0.3)

Jobs/Items Servers/Bins of size (1,1)

Vector packing: (Two Dimension)

1/11/2016 32

(0.3, 0.5)

(0.5, 0.1)

(0.25, 0.5)

(0.6, 0.4)

(0.1, 0.3)

Jobs/Items Servers/Bins of size (1,1)

Vector packing: (Two Dimension)

1/11/2016 33

(0.3, 0.5)

(0.5, 0.1)

(0.25, 0.5)

(0.6, 0.4)

(0.1, 0.3)

Jobs/Items Servers/Bins of size (1,1)

Vector packing: (Two Dimension)

1/11/2016 34

(0.3, 0.5)

(0.5, 0.1)

(0.25, 0.5)

(0.6, 0.4)

(0.1, 0.3)

Jobs/Items Servers/Bins of size (1,1)

Vector packing: (Two Dimension)

1/11/2016 35

(0.3, 0.5)

(0.5, 0.1)

(0.25, 0.5)

(0.6, 0.4)

(0.1, 0.3)

Jobs/Items Servers/Bins of size (1,1)

Vector packing: (Two Dimension)

1/11/2016 36

(0.3, 0.5)

(0.5, 0.1)

(0.25, 0.5)

(0.6, 0.4)

(0.1, 0.3)

Jobs/Items Servers/Bins of size (1,1)

Vector packing

37

Input:
Set of d-dimensional vectors with
nonnegative values.
Goal:
pack all vectors into minimum number
of unit vector bins such that for each bin for
each dimension for coordinate wise sum
of packed vector in it is ≤ 1.

Applications:

• Very Classical Generalization of Bin Packing.
-- subsumes all applications of Bin Packing.

• Scheduling
-- cloud computing.

• Vehicle Loading
• Layout Design

1/11/2016 38

A tale of approximibility (asymptotic)

• Algorithm:

• 𝑑 + 0.7 [FirstFit: Garey-Graham-Johnson-Yao 1976]

• 𝑑 + 𝜖 [Linear grouping: Fernandez de la Vega-Lueker 1981]

• 2 + ln(𝑑) + 𝜖 [Assignment LP: Chekuri-Khanna 1999]

• 2 for 𝑑 = 2 [Kellerer-Kotov 2003]

• 1 + ln(𝑑) + 𝜖 [Configuration LP: Bansal-Caprara-Sviridenko FOCS 2006]

• Hardness:

• No APTAS (from 3D Matching)[Woeginger 1997], Hardness=1.0001

1/11/2016 39

Our Results: [Bansal,Elias, K.]

• Algorithm:

• 1.405 Approximation Algorithm for 2 Dimensional Vector Packing.

• 1 + ln
𝑑+1

2
for 𝑑 Dimensional Vector Packing.

• Hardness of 𝑑 for constant rounding based algorithms.

• Resource Augmentation:

• If we allow extra resource of 𝜖 in (𝑑 − 1) dimensions, we can find a
packing in polynomial time in 1 + 𝜖 𝑂𝑝𝑡 + 𝑂(1) number of bins.

1/11/2016 40

Configurations

1/11/2016 41

• ℂ: set of configurations (possible
way of feasibly packing a bin).

Objective: min # configurations(bins)

Constraint:

For each item, at least one configuration

containing the item should be selected.

Constant Type of large items ⇒ polytime

• Assume all items are ≥ 𝜖 in one of the dimensions, there are only

constant 𝑀 =
𝑑

𝜖
items in each bin.

• If only 𝑇 types of distinct items are there, possible number of
configurations R = 𝑀+𝑇

𝑀
is constant.

• The number of bins used is at most 𝑛

• Number of feasible packing is at most = 𝑛+𝑅
𝑅

.

• Enumerating them and picking the best packing gives a polynomial
time optimal algorithm.

1/11/2016 42

O(1) Rounding based Algorithms

1/11/2016 43

• Rounding up:

• Replace an item by a larger item.

• Loss:
Due to larger items.

• Gain:

Fewer configurations. If there are
constant types of items we
can solve rounded instance
optimally.

Linear grouping (1D: If all items are ≥ 𝜖)
[Fernandez de la Vega –Lueker 1978]

1/11/2016 44

𝑂𝑝𝑡 𝐽′ ≤ 𝑂𝑝𝑡 𝐼 ≤ 𝑂𝑝𝑡 𝐽 ≤ 𝑂𝑝𝑡 𝐽′ (1 + 𝜖)

Divide into 𝐾 =
1/𝜖2 groups.

Each group
contains at most
𝑄 = 𝑛 𝜖2 items

Linear grouping (1D: If all items are ≥ 𝜖)
[Fernandez de la Vega –Lueker 1978]

1/11/2016 45

𝑂𝑝𝑡 𝐽′ ≤ 𝑂𝑝𝑡 𝐼 ≤ 𝑂𝑝𝑡 𝐽

Divide into 𝐾 =
1/𝜖2 groups.

Each group
contains at most
𝑄 = 𝑛 𝜖2 items

Linear grouping (1D: If all items are ≥ 𝜖)
[Fernandez de la Vega –Lueker 1978]

1/11/2016 46

𝑂𝑝𝑡 𝐽′ ≤ 𝑂𝑝𝑡 𝐼 ≤ 𝑂𝑝𝑡 𝐽

Divide into 𝐾 =
1/𝜖2 groups.

Each group
contains at most
𝑄 = 𝑛 𝜖2 items

Linear grouping (1D: If all items are ≥ 𝜖)
[Fernandez de la Vega –Lueker 1978]

1/11/2016 47

𝑂𝑝𝑡 𝐽′ ≤ 𝑂𝑝𝑡 𝐼 ≤ 𝑂𝑝𝑡 𝐽 ≤ 𝑂𝑝𝑡 𝐽′ + 𝑄

Divide into 𝐾 =
1/𝜖2 groups.

Each group
contains at most
𝑄 = 𝑛 𝜖2 items

Linear grouping (1D: If all items are ≥ 𝜖)
[Fernandez de la Vega –Lueker 1978]

1/11/2016 48

𝑂𝑝𝑡 𝐽′ ≤ 𝑂𝑝𝑡 𝐼 ≤ 𝑂𝑝𝑡 𝐽 ≤ 𝑂𝑝𝑡 𝐽′ + 𝑄

Large items:
𝑂𝑝𝑡 ≥ 𝑛 𝜖

Extra items:
𝑄 = 𝑛𝜖2

≤ 𝜖𝑂𝑝𝑡

Linear grouping (1D: If all items are ≥ 𝜖)
[Fernandez de la Vega –Lueker 1978]

1/11/2016 49

𝑂𝑝𝑡 𝐽′ ≤ 𝑂𝑝𝑡 𝐼 ≤ 𝑂𝑝𝑡 𝐽 ≤ 𝑂𝑝𝑡 𝐽′ + 𝜖𝑂𝑝𝑡 𝐽′ ≤ 1 + 𝜖 𝑂𝑝𝑡(𝐽′)

Large items:
𝑂𝑝𝑡 ≥ 𝑛 𝜖

Extra items:
𝑄 = 𝑛𝜖2

≤ 𝜖𝑂𝑝𝑡

Configuration LP

• ℂ: set of configurations(possible way of feasibly packing a bin).

Primal:

min {

𝐶

𝑥𝐶:

𝐶∋𝑖

𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

Objective: min # configurations(bins)

Constraint:

For each item, at least one configuration

containing the item should be selected.

1/11/2016 50

Configuration LP

• ℂ: set of configurations(possible way of feasibly packing a bin).

Primal:

min {

𝐶

𝑥𝐶:

𝐶∋𝑖

𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

Gilmore Gomory LP:

Min {1𝑇𝑥: 𝐴𝑥 ≥ 𝑏, 𝑥𝐶 ≥ 0(𝐶 ∈ ℂ)}

Columns: Feasible configurations

Rows: Items (or types of items)

1/11/2016 51

Configuration LP

• ℂ: set of configurations(possible way of feasibly packing a bin).

Primal:

min {

𝐶

𝑥𝐶:

𝐶∋𝑖

𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

Dual:

max {

𝑖∈𝐼

𝑣𝑖:

𝑖∈C

𝑣𝑖 ≤ 1 𝐶 ∈ ℂ , 𝑣𝑖 ≥ 0 𝑖 ∈ 𝐼 }

• Problem: Exponential number of configurations!

• Solution: Can be solved within (1 + 𝜖) accuracy using separation problem for the dual.

1/11/2016 52

Configuration LP

• ℂ: set of configurations(possible way of feasibly packing a bin).

Primal:

min {

𝐶

𝑥𝐶:

𝐶∋𝑖

𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

Dual:

max {

𝑖∈𝐼

𝑣𝑖:

𝑖∈C

𝑣𝑖 ≤ 1 𝐶 ∈ ℂ , 𝑣𝑖 ≥ 0 𝑖 ∈ 𝐼 }

• Problem: Exponential number of configurations!

• Solution: Can be solved within (1 + 𝜖) accuracy using separation problem for the dual.

1/11/2016 53

Dual Separation problem =>
𝑑-D Vector Knapsack problem:

𝑖∈C

𝑣𝑖
∗ > 1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐶 ∈ ℂ

Configuration LP

• ℂ: set of configurations(possible way of feasibly packing a bin).

Primal:

min {

𝐶

𝑥𝐶:

𝐶∋𝑖

𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

Dual:

max {

𝑖∈𝐼

𝑣𝑖:

𝑖∈C

𝑣𝑖 ≤ 1 𝐶 ∈ ℂ , 𝑣𝑖 ≥ 0 𝑖 ∈ 𝐼 }

• Problem: Exponential number of configurations!

• Solution: Can be solved within (1 + 𝜖) accuracy using separation problem for the dual.

1/11/2016 54

Dual Separation problem =>
𝑑-D Vector Knapsack problem:

𝑖∈C

𝑣𝑖
∗ > 1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐶 ∈ ℂ

• Max 𝑖∈𝐼 𝑣𝑖
∗𝑥𝑖

• S.t. 𝑖∈𝐼 𝑠𝑖
𝑘 𝑥𝑖 ≤ 1 , for 𝑘 ∈ 𝑑 .

𝑥𝑖 ∈ {0,1}

Randomized Rounding of Configuration LP

• 1. Solve configuration LP using APTAS. Let 𝑧∗ = 𝐶∈ℂ 𝑥
𝐶
∗ .

Primal:

min {

𝐶

𝑥𝐶:

𝐶∋𝑖

𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

1/11/2016 55

Randomized Rounding of Configuration LP

• 1. Solve configuration LP using APTAS. Let 𝑧∗ = 𝐶∈ℂ 𝑥
𝐶
∗ .

• 2. Round: For ⌈ln 𝜌 . 𝑧∗⌉ iterations :

select a configuration 𝐶’ at random with probability
𝑥

𝐶′
∗

𝑧∗ .

Primal:

min {

𝐶

𝑥𝐶:

𝐶∋𝑖

𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

1/11/2016 56

Round and Approx Framework (R & A)
[Bansal-Caprara-Sviridenko06, Bansal-K. 14]

• 1. Solve configuration LP using APTAS. Let 𝑧∗ = 𝐶∈ℂ 𝑥
𝐶
∗ .

• 2. Round: For ⌈ln 𝜌 . 𝑧∗⌉ iterations :

select a configuration 𝐶’ at random with probability
𝑥

𝐶′
∗

𝑧∗ .

• 3. Let S be the set of remaining uncovered elements.
Pack them using a O(1) rounding based algorithm.

1/11/2016 57

Few Residual Items!

•ℙ 𝑖 ∈ 𝑆 = 1 − 𝐶∋𝑖
𝑥𝐶

∗

𝑧∗

⌈(ln 𝜌)𝑧∗⌉

• ≤ 𝑒− ln 𝜌

• =
1

𝜌
.

•Opt still might not shrink!

1/11/2016 58

R & A for constant rounding based Algorithms

• Configuration LP(𝐼):

• 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑟 𝑥𝑟

• 𝑟 𝑐𝐵𝑗

𝑟 𝑥𝑟 ≥ 𝐵𝑗 ∀ 𝑗 ∈ [𝑡]

• 𝑥𝑟 ≥ 0 (𝑟 = 0,1 … 𝑚)

• Configuration LP(𝐼 ∩ 𝑆):

• 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑟 𝑥𝑟

• 𝑟 𝑐𝐵𝑗

𝑟 𝑥𝑟 ≥ 𝐵𝑗 ∩ 𝑆 ∀ 𝑗 ∈ [𝑡]

• 𝑥𝑟 ≥ 0 (𝑟 = 0,1 … 𝑚)

• 𝐼: instance obtained from 𝐼 by rounding up big items. 𝑡 is constant.

1/11/2016 59

Fact: Any feasible system 𝑏 ∈ ℝ𝑛 , 𝐴𝑥 = 𝑏, 𝑥 ≥ 0
has a solution x* with support(x*) ≤ 𝑛.

Proof Sketch
• Rounding based Algo ∶ O 1 types of items
= 𝑂(1) number of constraints in Configuration LP.

• 𝐴𝐿𝐺𝑂 𝑆 ≈ 𝑂𝑃𝑇(𝑆) ≈ 𝐿𝑃(𝑆).

• 𝐴𝑠 # items for each item type shrinks by 𝜌, 𝐿𝑃(𝑆) ≈
1+𝜖

𝜌
𝐿𝑃 𝐼 .

• 𝜌 Approximation: 𝐿𝑃 𝐼 ≤ 𝜌 𝑂𝑃𝑇 𝐼 + 𝑂 1 .

• 𝐴𝐿𝐺𝑂 𝑆 ≈ 𝑂𝑃𝑇(𝑆) ≈ 𝑂𝑃𝑇(𝐼).

1/11/2016 60

Proof Sketch

• Thm: R&A gives a (1 + ln 𝜌) approximation.

• Proof:

• Randomized Rounding ∶ q= ln 𝜌.𝐿𝑃(𝐼)

• Residual Instance S = (1 + 𝜖)𝑂𝑃𝑇(𝐼) + 𝑂(1).

• Round + Approx => (ln 𝜌 + 1 + 𝜖)𝑂𝑃𝑇(𝐼) + 𝑂(1).

1/11/2016 61

Round and Approx Framework

• Theorem: (𝑑 + 𝜖) approximation is tight for 𝑂(1)
rounding based algorithms.

• 1 + ln 𝑑 + 𝜖 approx. is tight in this framework.

• 𝑑 = 2

• For, 2 dimensions matching bins (one or two items
cover 1 − 𝜖 area of bins) create problem.

• If there are such bins we can get a 3/2
approximation using a structural lemma.

1/11/2016 62

Structural lemma

• 2 D vector packing:

• Any packing of 𝑚 bins can be transformed
into a packing of 3𝑚(1 + 𝜖)/2 bins where
each bin either contains 2 items (matching
bins) or has slack in (d-1) dimensions
(nonmatching bins).

• 𝑑 D vector packing:

• Any packing of 𝑚 bins can be transformed
into a packing of packing of 2𝑚 1 +

𝜖

2
bins

where at most 𝑚 bins contain ≤ 𝑑 − 1 items
(compact bins) in it and other 𝑚(1 + 𝜖) bins
have slack in (𝑑 − 1) dimensions (noncompact
bins).

1/11/2016 63

Proof Sketch

1/11/2016 64

• 2 D vector packing: 2 bins A,B => 3 bins D,E,F s.t.
each bin either has 2 items or has slack in (d-1)
dim.

• ≥ 3 items in a bin A/B.

• In each dim at most one item ≥
1

2
.

• There is one item ≤
1

2
,
1

2
. [candidate item 𝑐𝐴, 𝑐𝐵]

• Two candidate items 𝑐𝐴, 𝑐𝐵 can be packed in one
matching bin D.

• Big Items: (> 𝜖 in one of the dimensions)

• Small items: (< 𝜖 in all dimensions)

Proof Sketch

1/11/2016 65

• 2 D vector packing:

• one item ≤
1

2
,
1

2
in each bin [candidate item]

• Two candidate items 𝑐𝐴, 𝑐𝐵can be packed in
one matching bin D.

• Big Items: (> 𝜖 in one of the dimensions)

• Small items: (< 𝜖 in all dimensions)

• If candidate item big, we get enough slack.

• Otherwise, we can remove a subset of small
items from A (and B) to get bins with slack E,F
and pack removed items in D.

Resource Augmentation

1/11/2016 66

• Allow extra resource 𝜖 in one dimension.

• Theorem:
If we allow resource augmentation in (d-1) dimensions
we can pack items in 1 + 𝜖 𝑂𝑝𝑡 number of bins.

• Round big items Linear grouping in non-augmented
dimension, Round down items to multiple of 𝜖2 in other
dimensions ⇒ O(1) types of big items.

• Find optimal packing of rounded big items.
• Pack small items using an assignment LP.

• 2 D vector packing: (Existential Result)

• Any packing of 𝑚 bins can be transformed into a packing of 3𝑚(1 +
𝜖)/2 bins where each bin either contains 2 items (matching bins) or
has O(1) types of big items (nonmatching bins).

• We can find these rounded values in polynomial time.

• If we can separate out items in matching bins and nonmatching bins,
we can pack each of them separately.

• Not possible! So we guess number of items in matching bins and
nonmatching bins for each rounded class.

1/11/2016 67

MultiObjective MultiBudget Matching
[Chekuri-Vondrak-Zenklusen]

• Given a graph and a partition of its
vertices into 𝑘 sets such that 𝑉 ≔ 𝑆1 ∪
𝑆2 ∪ ⋯ 𝑆𝑘 and numbers 𝑛1, 𝑛2, ⋯ 𝑛𝑘;
there is a polynomial time Algorithm that
finds a matching that saturates at least
1 − 𝜖 𝑛𝑖 and at most 𝑛𝑖 items from each

𝑆𝑖 .

• If no such solution is found, the algorithm
returns a certificate that there is no such
feasible matching for the instance.

1/11/2016 68

Algorithm for 2D Vector Packing

• 1. Guess 𝑂𝑝𝑡, number of 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 bins M and 𝑛𝑜𝑛𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 bins N.

• 2. Find round vectors 𝑟𝑥 and assign items to the corresponding class 𝑊𝑥 .

• 3. Find 𝑚𝑥, 𝑛𝑥: the number of items from matching and nonmatching bins in 𝑊𝑥 .

• 4. Use multi objective multi budget matching to pack 𝑚𝑥 items from each class 𝑊𝑥.

• 5. Solve configuration LP restricted to the remaining items. Let 𝑧∗ = 𝐶∈ℂ 𝑥
𝐶
∗ .

• 6. Round: For ⌈ln 𝜌 . 𝑧∗⌉ iterations : (Take 𝜌 =
3

2
)

select a configuration 𝐶’ at random with probability
𝑥

𝐶′
∗

𝑧∗ .

• 7. Approx: Let 𝑆 be the set of remaining uncovered elements.
Apply 3/2 approximation algorithm 𝐴 on 𝑆 that rounds the big items to 𝑂(1) types and small items are
packed near-optimally using an assignment LP.

• Theorem: Above algorithm always returns a solution with at most (1 + ln
3

2
+ 𝜖)𝑂𝑝𝑡 bins.

• M+ln 𝜌 . (M+N)+ N

1/11/2016 69

Algorithm for d Dimensional Vector Packing

• 1. Guess 𝑂𝑝𝑡, number of bins in the optimal solution.

• 2. Find round vectors 𝑟𝑥 and assign items to the corresponding class 𝑊𝑥 .

• 3. Solve configuration LP. Let 𝑧∗ = 𝐶∈ℂ 𝑥
𝐶
∗ .

• 4. Round: For ⌈ln 𝜌 . 𝑧∗⌉ iterations (Take 𝜌 =
𝑑

2
) :

select a configuration 𝐶’ at random with probability
𝑥

𝐶′
∗

𝑧∗ .

• 5. Let 𝑆 be the set of remaining uncovered elements. Find 𝑚𝑥, 𝑛𝑥: the number of items from compact and
noncompact bins in (𝑊𝑥 ∩ 𝑆).

• 6. Use multi objective multi budget matching to pack 𝑚𝑥 items from each class 𝑊𝑥 into 1.5 𝑂𝑝𝑡 bins.

• 7. Apply 𝑂 1 rounding based approximation algorithm 𝐴 on 𝑆 that rounds the big items to 𝑂(1) types and

pack remaining big items in
2 1+𝜖 𝑂𝑝𝑡

𝑑
bins. Pack small items near-optimally using an assignment LP.

• Theorem: Above algorithm always returns a solution with at most 1.5 + ln
𝑑

2
+ 𝑜𝑑(1) 𝑂𝑝𝑡 bins.

1/11/2016 70

Related Open problems

1/11/2016 71

Vector Bin Covering and Maxmin Scheduling

• Vector Bin Covering: Partition vectors such that in each set in each
dimension sum of vectors is ≥ 1.

• Random partition into 2 ln 𝑑 sets work with high probability!
(balls/bins)

• Can we get 𝑙𝑛𝑙𝑛𝑑?

• PTAS for Multidimensional minimum knapsack?

• Generalizations to unrelated/related job scheduling.

1/11/2016 72

Two-Dimensional Geometric Bin Packing

• Given: Collection of rectangles (by width, height)

• Goal: Pack them into minimum number of unit square bins.

- Orthogonal Packing: rectangles packed parallel to bin edges.

- With 90 degree Rotations and without rotations.

1/11/2016 73

Guillotine Packing

Guillotine Cut: Edge to Edge cut across a bin

1/11/2016

Objective: Minimize number of bins such that packing in each bin is a guillotine packing.

Guillotine Packing => General Bin packing

Guillotine Cut: Edge to Edge cut across a bin

23

1 5

3

6

1

2

4

2-stage 4-stage

1/11/2016

• There is an APTAS for Guillotine Packing [BLS FOCS 2005].
• Given any packing of m bins, there is a Guillotine packing in 4m/3 bins. => 4/3 approximation.
• PTAS for geometric 2 D knapsack

1/11/2016 76

Questions!

Thank You!

1/11/2016 77

1/11/2016 78

Next Fit Decreasing Height(NFDH)

1/11/2016 79

• Considered items in a non-increasing order of height and
greedily packs items into shelves.

• Shelf is a row of items having their bases on a line that is either
the base of the bin or the line drawn at the top of the highest
item packed in the shelf below.

• items are packed left-justified starting from bottom-left corner
of the bin, until the next item does not fit. Then the shelf is
closed and the next item is used to define a new shelf whose
base touches the tallest(left most) item of the previous shelf.

• If the shelf does not fit into the bin, the bin is closed and a new
bin is opened. The procedure continues till all the items are
packed.

• If we pack small rectangles (𝑤, ℎ ≤ 𝛿) using NFDH into B, total 𝑤. ℎ − 𝑤 + ℎ . 𝛿 area can be packed.

Details of Chernoff Bound

• |𝐵_𝑗|, 𝑤(𝐿_𝑘) and ℎ(𝑊ℓ) are at least Ω
1

𝜖2 log 𝑡

• By standard Chernoff bounds, ℙ [𝐵𝑗 ∩ 𝑆 ≥ 1 + 𝜖 |𝐵𝑗 ∩ 𝑆|] is at
most \exp(−𝜖2 |𝐵_𝑗|/𝜌) = \exp(−Ω(log 𝑡)/𝜌) = 1/𝑝𝑜𝑙𝑦(𝑡).

• Taking a union bound over the 𝑡 constraints, whp, RHS for each
constraint in LP(𝐼 ∩ 𝑆) is at most (1 + 𝜖)/𝜌 times the right hand side
of the corresponding constraint in LP(𝐼).

1/11/2016 80

• 1 D BP: FDLVGL, linear grouping. Karp Karmarkar.

• Partition Hardness.

• 2D history

• Config lp 1 slide

• RandA 2 slides

• Proof outline 4slides

• 3/2 algo idea 2 slides

• 4/3 hardness 2 slides

• 3/2 hardness 1 slides

1/11/2016 81

1-d: Algorithm

0 1
I

1/11/2016 82

1-d: Algorithm

0 1
I



bigs

1/11/2016 83

1-d: Algorithm
Partition bigs into 1/2 = O(1) groups, with equal objects

0 1

0 1
I’

I

. . .

I’ ¸ I

1/11/2016 84

1-d: Algorithm
Partition bigs into 1/2 = O(1) groups, with equal objects

0 1

0 1
I’

I

. . .

I’ ¸ I I’ – { } · I

I’ ¼ I I’ has only O(1/2) distinct sizes

1/11/2016 85

86/61

APTAS for 1-d bin packing

Theorem: [de la Vega, Lueker 81]

Alg(I) · Opt(I)/(1-) + 1/2

¼ Opt(I) (1+) + f()

!
1

42

3
1

4
3

2

1/11/2016

87/61

Main idea

Simplify Original instance I -> I’

• I’: easy to solve

• Solutions of I and I’ close (within 1+)

1/11/2016

88/61

Ideas applied to 1-d packing

· : Small ¸ : Big

1) I ! I’ with 1/2 different big sizes & solns. within 1+

2) I’ easy: If k= O(1) different big sizes, can get Opt + k

1/11/2016

89/61

1-d: Rounding to a simpler instance

0 1
I

Various object sizes

1/11/2016

90/61

1-d: Rounding to a simpler instance
Ib : I restricted to bigs. Let b = # of bigs (i.e. ¸ )

0 1
Ib

1

Various object sizes

1/11/2016

91/61

1-d: Rounding to a simpler instance

Partition big into 1/2 groups, each group has b¢ 2 objects

0 1
Ib

Ib : I restricted to bigs. Let b = # of bigs (i.e. ¸ )

(here b¢2 =3)

1/11/2016

92/61

1-d: Rounding to a simpler instance

Partition big into 1/2 groups, each group has b¢ 2 objects

Instance I’b : Ignore largest b ¢ 2 objects.
Round up sizes to smallest size in next higher group

0 1

0 1
I’b

Ib

Ib : I restricted to bigs. Let b = # of bigs (i.e. ¸ )

1/11/2016

93/61

1-d: Rounding to a simpler instance

Partition big into 1/2 groups, each group has b¢ 2 objects

Instance I’b : Ignore largest b ¢ 2 objects.
Round up sizes to smallest size in next higher group

Alg(I’b) · Alg(Ib)

0 1

0 1
I’b

Ib

Ib : I restricted to bigs. Let b = # of bigs (i.e. ¸ )

1/11/2016

94/61

1-d: Rounding to a simpler instance

Partition big into 1/2 groups, each group has b¢ 2 objects

Instance I’b : Ignore largest b ¢ 2 objects.
Round up sizes to smallest size in next higher group

Alg(Ib) · Alg(I’b) + b 2

0 1

0 1
I’b

Ib

Ib : I restricted to bigs. Let b = # of bigs (i.e. ¸ )

1/11/2016

95/61

1-d: Rounding to a simpler instance

Partition big into 1/2 groups, each group has b¢ 2 objects

Instance I’b : Ignore largest b ¢ 2 objects.
Round up sizes to smallest size in next higher group

Alg(I’b) · Alg(Ib) · Alg(I’b) + b 2

0 1

0 1
I’b

Ib

Ib : I restricted to bigs. Let b = # of bigs (i.e. ¸ )

1/11/2016

96/61

1-d: Rounding to a simpler instance

Partition big into 1/2 groups, each group has b¢ 2 objects

Instance I’b : Ignore largest b ¢ 2 objects.
Round up sizes to smallest size in next higher group

Alg(I’b) · Alg(Ib) · Alg(I’b) + b 2

Opt(Ib) ¸ b ) b 2 ·  Opt(Ib)

0 1

0 1
I’b

Ib

Ib : I restricted to bigs. Let b = # of bigs (i.e. ¸ )

1/11/2016

97/61

1-d: Solving the “few and big” case
I’b : 1/2 different sizes > . Call these s1,…,sk .

Configuration: A way to pack a bin (Eg: C = [3 s1, 17 s3, 5 s18])

|Configurations| · (1/2)1/ = O(1)

xi : # of bins with configuration i

nj : # of objects of size sj in instance

cij: # of objects of size sj in configuration i.

Minimize i xi

i cij xi ¸ nj 8 j 2 [1,..,1/2]

xi ¸ 0 8 i, xi 2 Z

IP for I’b

1/11/2016

98/61

1-d: “Few and Big” using LP
Minimize i xi

i cij xi ¸ nj 8 j 2 [1,..,1/2]

xi ¸ 0 (Relaxed to be fractional)

Clearly, LP (Ib’) · OPT(Ib’)

xi could be fractional.

Round up to next integer (Eg: 17.34 -> 18)

Adds · # configurations = (1/2)1/ = O(1)

In fact, adds · 1/2 (non-zero xi’s in basic soln)

1/11/2016

99/61

1-d: Filling in the smalls
So, Alg(Ib) · Opt(I)/(1-) + 1/2

Packing smalls:
• In each bin, fill as many smalls as possible.
• If bins not enough, open new bins to fill smalls.

Proof:
• If no new bins opened, done.
• If new bins opened, all bins (except maybe last) filled 1-

So, Alg(I) · Area(I)/(1-) + 1
· Opt(I)/(1-) + 1

1/11/2016

100/61

1-d: Overview

0) Partition into small and big

1) Pack small objects later

2) Round large objects to O(1) sizes.

Solve the “few and big” case almost optimally.

1/11/2016

Guillotine Bin Packing

Guillotine Cut: Edge to Edge cut across a bin

1/11/2016

Guillotine Bin Packing

Guillotine Cut: Edge to Edge cut across a bin

k-stage Guillotine Packing [Gilmore, Gomory]

k recursive levels of guillotine cuts to recover all items.

23

1 5

3

6

1

2

4

2-stage 4-stage

1/11/2016

Non-guillotine Packing

1

2
3

4

1/11/2016

